河南能源发展网
培训
培训
我的位置: 首页 > 双碳 > 培训
丁仲礼院士:固碳端技术的研发与未来展望
发布时间:2025-04-09
  |  
阅读量:
  |  
来源:河南能源发展网
分享到:

  1、全球每年的碳排放量大约为400亿吨二氧化碳,其中的86%来自化石燃料燃烧,14%由土地利用变化造成。这400亿吨二氧化碳中,大致有54%被自然过程所吸收固定,剩下的46%则留存于大气中。在自然吸收的54%中,23%由海洋完成,31%由陆地生态系统完成。这184亿吨(46%)加入到大气中,导致大约2ppmv的大气二氧化碳浓度增加。

  2、我国当前二氧化碳年排放量大数在100亿吨左右,约为全球总排放量的四分之一。我国目前的能源消费总量约为50亿吨标准煤,其中煤炭、石油和天然气三者合起来占比接近85%,其他非碳能源的占比只有15%多一点。在煤、油、气三类化石能源中,碳排放因子最高的煤炭占比接近70%。

  3、约100亿吨二氧化碳的年总排放中,发电和供热约占45亿吨,建筑物建成后的运行(主要是用煤和用气)约占5亿吨,交通排放约占10亿吨,工业排放约占39亿吨。

  工业排放的四大领域是建材、钢铁、化工和有色,而建材排放的大头是水泥生产(水泥以石灰石(CaCO3)为原料,煅烧成氧化钙(CaO)后,势必形成二氧化碳排放)。

  4、我国工业排放约占总排放量的68%(电力/热力生产过程产生的二氧化碳排放,其“账”应该记到电力消费领域头上。根据研究,发现这45亿吨二氧化碳中,约29亿吨最终也应记入工业领域排放,约12.6亿吨应记入建筑物建成后的运行排放。)

  5、中国的碳中和需要构建一个“三端共同发力体系”:

  第一端是电力端,即电力/热力供应端的以煤为主应该改造发展为以风、光、水、核、地热等可再生能源和非碳能源为主。

  第二端是能源消费端,即建材、钢铁、化工、有色等原材料生产过程中的用能以绿电、绿氢等替代煤、油、气,水泥生产过程把石灰石作为原料的使用量降到最低,交通用能、建筑用能以绿电、绿氢、地热等替代煤、油、气。能源消费端要实现这样的替代,一个重要的前提是全国绿电供应能力几乎处在“有求必应”的状态。

  第三端是固碳端,可以想见,不管前面两端如何发展,在技术上要达到零碳排放是不太可能的,比如煤、油、气化工生产过程中的“减碳”所产生的二氧化碳,又比如水泥生产过程中总会产生的那部分二氧化碳,还有电力生产本身,真正要做到“零碳电力”也只能寄希望于遥远的将来。

  6、进行固碳一般可分两大途径,一是生态系统的保育与修复,二是把二氧化碳捕集起来后,或加工成工业产品,或封埋于地下或海底,这第二方面就是经常谈到的“碳捕获、利用与封存”——CCUS(Carbon Capture and Utilization-Storage)。

  CCUS,它包括碳捕集技术、捕集后的工业化利用技术(分为生物利用和化工利用两大类)、地质利用和封存技术。对这些技术,国内外尚处在研发阶段,真正大面积的应用尚未见到。

  碳捕集技术分三大类。一是化学吸收法,它用化学吸收剂同烟道气中的二氧化碳生成盐类,再加热或减压将二氧化碳释放并收集。二是吸附法,又细分为化学吸附法和物理吸附法。化学吸附法是用吸附材料同二氧化碳分子先作化学键合,再改变条件把二氧化碳分子解吸附并收集;物理吸附法是利用活性炭、天然沸石、分子筛、硅胶等对烟道气中的二氧化碳作选择性吸附后再解吸附回收。三是膜分离法,即利用膜对气体分子透过率的不同,达到分离、收集二氧化碳之目的。在具体操作上,碳捕集还可分为燃烧前捕集、燃烧后捕集、化学链燃烧捕集、生物质能碳捕集、从空气中直接捕集等技术。

  碳捕集后的工业化生物利用技术目前主要有四大类,一是利用二氧化碳在反应器中生产微藻,这些微藻再用作生产燃料、肥料、饲料、化学品的原料。二是将捕集到的二氧化碳注入温室中,用以增加温室中作物的光合作用,这个过程又可称为二氧化碳施肥。三是把二氧化碳同微生物发酵过程相结合,生成有机酸。四是把二氧化碳用于合成人工淀粉。碳捕集后的工业化化工利用又分两大类技术途径,一大类是把二氧化碳中的四价态碳还原后加甲烷、氢气等气体,再整合成甲醇、烯烃、成品油等产品。另一大类为非还原技术,有二氧化碳加氨气后制成尿素、加苯酚后合成水杨酸、加甲醇后合成有机酸酯等技术,也有合成可降解聚合物材料、各类聚酯材料等技术。

  地质利用技术也有很多类型,这些技术有的已在工业化示范中,有的尚停留在实验室探索阶段。比如利用收集起来的二氧化碳驱油、驱煤层气、驱天然气、驱页岩气等,这属于油气开采领域的应用,这类技术的一个共性是通过生产性钻孔把超临界的二氧化碳压到地层中,利用它驱动孔隙、裂隙中的油、气流出开采性钻孔,达到油气增产或增加油气采收率的目的,与此同时,二氧化碳则滞留在孔隙、裂隙中得以长期封存。该类技术国内外已有工业应用示范。而另一些技术则在探索过程中,比如用于开采干热岩中的地热。干热岩埋深在数千米,其内部基本没有流体存在,温度在180℃以上,开采干热岩中的热能需要打生产井并用压裂手段使岩石增加裂隙,然后在生产井中注入工作介质,让其流动并采集热量,最后从开采井中收集热量。一些研究表明:用二氧化碳作为工作介质,既起到开采干热岩热量的作用,又可把部分二氧化碳封存于地下。

  地质封存技术则是把二氧化碳收集后直接通过钻孔注入地下深处或灌入深部海水中。这里要特别指出:深海对二氧化碳的溶解保存能力是巨大的。

  6、我国陆地生态系统固碳能力非常强。根据相关研究,2010—2020年间我国陆地生态系统每年的固碳量为10亿—13亿吨二氧化碳;一些专家根据这套数据并采用多种模型综合分析后,预测2060年我国陆地生态系统固碳能力为10.72亿吨二氧化碳/年,如果增强生态系统管理,还可新增固碳量2.46亿吨二氧化碳/年,即2060年我国陆地生态系统固碳潜力总量为13.18亿吨二氧化碳/年。此外,我国近海的生态系统固碳工程还没启动,这块儿也应该有较大潜力。

  至于把碳捕集后作工业化利用及封存的量有多大,这要取决于技术水平与经济效益,目前要对此作出估计是有难度的。但我们也可以作出这样的假定:如果届时实现碳中和有“缺口”,政府将对人为工业化固碳予以补贴,争取每年达到3亿—5亿吨二氧化碳的工业化固碳与地质封存。以中国的工业技术发展速度,这个假定还是相对“保守”的。

  其他地表过程固碳是指地下水系统把有机碳转化成石灰石沉淀、水土侵蚀作用把有机碳埋藏于河流—湖泊系统之中等地表过程,它一年能固定的碳总量目前没有系统研究数据,但粗略估计中位数在1亿吨二氧化碳左右。

  为此,我们可以做出这样的分析,假如我国2060年前后二氧化碳年排放量在25亿吨左右,那么海洋可吸收25×23%=5.75亿吨二氧化碳,陆地和近海生态系统固碳14亿吨二氧化碳,工业化固碳和地质封存4亿吨二氧化碳左右,基本上可以做到“净零排放”。当然,要从100亿吨的二氧化碳排放量降到25亿吨,难度亦是非常之大的,这需要我们先有一个宏观的粗线条规划。根据我国五年规划的惯例,可考虑以两个五年规划为一个阶段,分四个阶段,四十年时间实现碳中和目标。

  第一步为“控碳阶段”,争取到2030年把碳排放总量控制在100亿吨之内,即“十四五”期间可比目前增一点,“十五五”期间再减回来。在这第一个十年中,交通部门争取大幅度增加电动汽车和氢能运输占比,建筑部门的低碳化改造争取完成半数左右,工业部门利用煤+氢+电取代煤炭的工艺过程大部分完成研发和示范。这十年间电力需求的增长应尽量少用火电满足,而应以风、光为主,内陆核电完成应用示范,制氢和用氢的体系完成示范并有所推广。

  第二步为“减碳阶段”,争取到2040年把二氧化碳排放总量控制在85亿吨之内。在这个阶段,争取基本完成交通部门和建筑部门的低碳化改造,工业部门全面推广用煤/石油/天然气+氢+电取代煤炭的工艺过程,并在技术成熟领域推广无碳新工艺。这十年火电装机总量争取淘汰15%落后产能,用风、光资源制氢和用氢的体系完备及大幅度扩大产能。

  第三步为“低碳阶段”,争取到2050年把二氧化碳排放总量控制在60亿吨之内。在此阶段,建筑部门和交通部门达到近无碳化,工业部门的低碳化改造基本完成。这十年火电装机总量再削减25%,风、光发电及制氢作为能源主力,经济适用的储能技术基本成熟。据估计,我国对核废料的再生资源化利用技术在这个阶段将基本成熟,核电上网电价将有所下降,故用核电代替火电作为“稳定电源”的条件将基本具备。

  第四步为“中和阶段”,力争到2060年把二氧化碳排放总量控制在25亿—30亿吨。在此阶段,智能化、低碳化的电力供应系统得以建立,火电装机只占目前总量的30%左右,并且一部分火电用天然气替代煤炭,火电排放二氧化碳力争控制在每年10亿吨,火电只作为应急电力和一部分地区的“基础负荷”,电力供应主力为光、风、核、水。除交通和建筑部门外,工业部门也全面实现低碳化。尚有15亿吨的二氧化碳排放空间主要分配给水泥生产、化工、某些原材料生产和工业过程、边远地区的生活用能等“不得不排放”领域。其余5亿吨二氧化碳排放空间机动分配。

  7、对我国来说,主要的挑战在以下几个方面:

  一是我国的能源禀赋以煤为主。在煤、油、气这三种化石能源中,释放同样的热量,煤炭排放的二氧化碳量大大高于天然气,也比石油高不少。我国的发电长期以煤为主,这同石油、天然气在火电中占比很高的那些欧美发达国家比,是资源性劣势。

  二是我国制造业的规模十分庞大。我们在前面的介绍中提到,我国接近70%的二氧化碳排放来自工业,这个占比高出欧美发达国家很多,这同我国制造业占比高、“世界工厂”的地位有关。

  三是我国经济社会还处于压缩式快速发展阶段,城镇化、基础设施建设、人民生活水平提升等方面的需求空间巨大。

  四是我国的能源需求还在增长,意味着我国的二氧化碳排放无论是总量还是人均都会继续增长。

  五是我国2030年达峰后到2060年中和,其间只有30年时间,而美国、法国、英国从人均碳排放量考察,在20世纪70年代就达峰了,它们从达峰到2050年中和,中间有80年的调整时间。

  来源:丁仲礼院士文章节选